

Hardox® 400 Round Bars — Turning Recommendations

Typical Properties

Hardness in Brinell	Hardness in Rockwell	Tensile Strength,
(HBW)	(HRC)	Rm (N/mm²)
~ 400	~ 40	~ 1250

For more specific information see data sheet for Hardox® 400 Round Bar.

Cuttingdata Turning	Cemented Carbide	
	Roughing	Finishing
Cutting speed, V _c (m/min)	70 – 90	70 - 130
Feed per revolution, f _n (mm/r)	0.2 – 0.6	0.05 – 0.3
Cutting depth, a _p (mm)	2 – 4	0.5 – 2
Suitable grades	P20 – P35* K20 – K30*	K01 – K20*

^{*} If possible, use a CVD coated cemented carbide.

Note

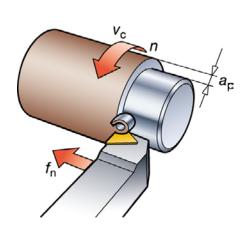
These cutting data should be seen as a starting values. It is up to each workshop to optimize cutting data for each machine.

1 866 650-5505

Remarks

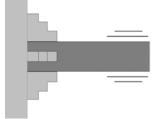
- lt is recommended to use cutting fluid when turning. Insert holder with internal cooling channels can be used.
- ▶ Use a tougher carbide grade with interrupted cut or face turning of large workpieces.
- At higher Feed rate, lower the cutting speed.

Formulas and definitions

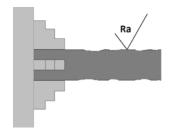

 $V_c = \pi x dx n / 1000$ n = speed (rpm)

 $n = V_c x 1000 / \pi x d$ $f_n = feed rate (mm/rev)$

 $v_f = n x f_n$ $v_f = feed rate (mm/min)$


 $\pi = 3.14$ d = workpiece Ø

 $V_c = cutting speed (m/min)$ $a_p = cutting depth (mm)$


Troubleshooting

Vibrations

- Improve the tool and workpiece stability.
- Change cutting speed.
- · Increasing feed.
- · Reduce the depth of cut.
- Choose a more easy-cutting chipbreaker.
- Select an insert with less nose radius.

Bad surface finish

- · Reduce feedrate.
- Increase cutting speed.
- · Use coolant.
- Improve the tool and workpiece stability.
- Choose a more easy-cutting chipbreaker.
- Select inserts with larger nose radius.

